Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Diagnostics (Basel) ; 14(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667462

RESUMO

This study aimed to develop a predictive model for intensive care unit (ICU) admission by using heart rate variability (HRV) data. This retrospective case-control study used two datasets (emergency department [ED] patients admitted to the ICU, and patients in the operating room without ICU admission) from a single academic tertiary hospital. HRV metrics were measured every 5 min using R-peak-to-R-peak (R-R) intervals. We developed a generalized linear mixed model to predict ICU admission and assessed the area under the receiver operating characteristic curve (AUC). Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated from the coefficients. We analyzed 610 (ICU: 122; non-ICU: 488) patients, and the factors influencing the odds of ICU admission included a history of diabetes mellitus (OR [95% CI]: 3.33 [1.71-6.48]); a higher heart rate (OR [95% CI]: 3.40 [2.97-3.90] per 10-unit increase); a higher root mean square of successive R-R interval differences (RMSSD; OR [95% CI]: 1.36 [1.22-1.51] per 10-unit increase); and a lower standard deviation of R-R intervals (SDRR; OR [95% CI], 0.68 [0.60-0.78] per 10-unit increase). The final model achieved an AUC of 0.947 (95% CI: 0.906-0.987). The developed model effectively predicted ICU admission among a mixed population from the ED and operating room.

2.
Sci Total Environ ; 924: 171516, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38458451

RESUMO

The hygroscopicity of PM2.5 particles plays an important role in PM2.5 haze in Northeast Asian countries by influencing particle growth and chemical composition. New particle formation (NPF) and atmospheric volatile organic compounds (VOCs) are factors that influence particle hygroscopicity. However, the lack of real-time hygroscopicity measurements has deterred the understanding of their effects on particle hygroscopicity. In this study, two intensive monitoring campaigns were conducted during the summer of 2021 and spring of 2022 using real-time aerosol instruments, including a humidified tandem differential mobility analyzer (HTDMA), in Seosan, Republic of Korea. The hygroscopicity parameter κ was calculated from the real-time HTDMA measurement data (κGf). The diurnal variations in κGf exhibited strong inverse linear correlations with the total concentration of VOCs (CTVOC) during the two campaigns. The higher atmospheric CTVOC in summer increased the growth rate of the particle diameter from 10 to 40 nm (6 nm/h) compared with that in spring (2.7 nm/h), resulting in a faster change in κGf for 40-nm particles in summer than in spring because of the increase in organic matter in the chemical compositions of particles. In addition, NPF events introduced additional tiny fresh particles into the atmosphere, which reduced the κGf of 40-nm particles and increased the intensity of the less hygroscopic peaks (κGf < 0.1) of κ-probability density functions (κ-PDF) in NPF days. However, 100-nm particles exhibited fewer changes in κGf than 40-nm particles, resulting in additional dominant hygroscopic peaks (κ âˆ¼ 0.2) of κ-PDFs in both NPF and non-NPF days. When κGf values measured in Seosan were compared with those in other Northeast Asian countries in the literature, the κ values for 40-nm particles were lower than those (κ > 0.2) measured in Beijing and Guangzhou, but those for 100-nm particles were close to those measured in the two cities.

3.
Sci Rep ; 13(1): 19832, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37963980

RESUMO

A fundamental understanding of the electrochemical behavior of hybrid perovskite and nitrogen-doped (N-doped) carbon is essential for the development of perovskite-based electrocatalysts in various sustainable energy device applications. In particular, the selection and modification of suitable carbon support are important for enhancing the oxygen reduction reaction (ORR) of non-platinum group metal electrocatalysts in fuel cells. Herein, we address hybrid materials composed of three representative N-doped carbon supports (BP-2000, Vulcan XC-72 and P-CNF) with valid surface areas and different series of single, double and triple perovskites: Ba0.5Sr0.5Co0.8Fe0.2O3-δ, (Pr0.5Ba0.5)CoO3-δ, and Nd1.5Ba1.5CoFeMnO9-δ (NBCFM), respectively. The combination of NBCFM and N-doped BP-2000 produces a half-wave potential of 0.74 V and a current density of 5.42 mA cm-2 at 0.5 V versus reversible hydrogen electrode, comparable to those of the commercial Pt/C electrocatalyst (0.76 V, 5.21 mA cm-2). Based on physicochemical and electrochemical analyses, we have confirmed a significant improvement in the catalytic performance of low-conductivity perovskite catalyst in the ORR when nitrogen-doped carbon with enhanced electrical conductivity is introduced. Furthermore, it has been observed that nitrogen dopants play active sites, contributing to additional performance enhancement when hybridized with perovskite.

4.
ACS Appl Mater Interfaces ; 15(38): 45354-45366, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37702662

RESUMO

The present work aims to predict the degradation in the performance of a solid oxide fuel cell (SOFC) cathode owing to cation interdiffusion between the electrolyte and cathode and surface segregation. Cation migration in the (La0.60Sr0.40)0.95Co0.20Fe0.80O3-x (LSCF)-Gd0.10Ce0.90O1.95 (GDC) composite cathode is evaluated in relation to time up to 1000 h using scanning transmission electron microscopy (STEM)-energy-dispersive X-ray spectroscopy (EDXS). The resulting insulating phase formed within the GDC interlayer is quantified by means of the volume fraction using a two-dimensional (2D) image analysis technique. For the very first time, the amount of the insulating phase in the GDC interlayer is quantified, and the corresponding performance degradation of the LSCF cathode is predicted. Mathematical relationships are established for the estimation of degradation due to surface segregation of the cathode. The ohmic resistance between the cathode and the GDC interlayer/electrolyte interface and the polarization resistance of the cathode, characterized by electrochemical impedance spectroscopy (EIS), show an excellent match with the predicted results. The combined degradation analysis and modeling for the cathode lifetime prediction provide a systematic understanding of the time-dependent cation migration and segregation behavior.

5.
Sci Total Environ ; 893: 164892, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327901

RESUMO

In urban areas, particulate matter emitted from vehicles directly affects the health of citizens near roads. Thus, in this study, particle size distribution was measured by the horizontal and vertical distances along a highway road with heavy traffic to characterize the dispersion phenomena of particulate matter emitted from vehicles. In addition, the contribution of pollution sources was analyzed using a source-receptor model. A concentration gradient was observed in which the concentration decreased with the increase in the distance from the road when the wind blew from the road to the monitoring locations. The concentration was slightly higher within 50 m of the road when the wind blows parallel to the road, and similar concentrations were found at the other monitoring locations further away from the roads. In particular, the higher the turbulence intensity of the wind, the lower is the concentration gradient coefficient because of the more enhanced mixing and dispersion. A positive matrix factorization (PMF) model with the measured particle size distribution data in the range of 9-300 nm resulted in a contribution of about 70 % (number) and 20 % (mass) to particle concentrations because of six types of vehicles including LPG, two gasoline vehicles (GDI, MPI), and three diesel vehicles with 3rd, 4th, and 5th emission classes. It showed a decrease in the vehicular contribution as the distance from the road increased. Particle number concentrations decreased with increasing altitude up to 30 m above the ground. The results of this study can be useful in deriving generalized gradient equations of particle concentrations exposed by distance and wind direction at the roadside using traffic and meteorological conditions and for establishing environmental policies, such as roadside exposure assessment, in the future. A CAPSULE ABSTRACT: Dispersion of particles emitted from vehicles on a busy highway was characterized by roadside measurements of horizontal and vertical profiles of particle size distributions measured at four locations. The source profiles and contributions were estimated by major sources using a source-receptor model such as PMF.

6.
Brain Neurorehabil ; 16(1): e1, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37033009

RESUMO

We report a case of a patient who presented with ipsilateral oculomotor nerve palsy after a spontaneous left temporoparietal lobar hemorrhage with mass effect. Primary symptomatology included ipsilateral ptosis, dilated fixed pupil, and a lack of superior and medial movement with limited inferior left eye movements. Brain imaging revealed compression of the left upper midbrain due to subtentorial herniation of the hemorrhage, and susceptibility-weighted images sequences showed cerebral microbleed in the left midbrain substantia nigra. Based on our observation from this case, physicians should consider temporoparietal lobar hemorrhage with mass effect as an attributable factor in the etiologic cause of ipsilateral oculomotor nerve palsy.

7.
J Hazard Mater ; 453: 131368, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37043860

RESUMO

Transportation is globally becoming more vehicle-dependent as public awareness towards the health risks caused by cabin-emitted volatile organic compounds (VOCs) increases. Therefore, the need for quantifying their concentration increases as well. This study measured the real-time VOCs in a new mini-truck-type electric vehicle cabin using a proton transfer reaction time-of-flight mass spectrometry under varying cabin heating conditions during winter. A total of 246 ions were detected between m/z 30 and 250, 82 of which were quantified. The total ion count in the cabin was double that of the ambient air. Morning-to-noon concentration of total VOCs increased 2.5 times in the cabin under solar exposure (164.47-405.92 µg·m-3). Additionally, 12 VOCs that either had higher indoor-to-outdoor ratios or globally regulated chosen to investigate the effects of cabin air conditions. Heater operation immediately increased concentrations of some VOCs by 54.62%. Furthermore, blocking solar exposure from windows reduced VOC emissions during heater off and on scenarios by 35.49% and 65.42%, respectively, indicating that window coverage also provided insulation against heat loss. Finally, the fresh air reduced cabin VOCs by 62.83% due to ambient air inflow. However, cabin concentrations remained higher than those of ambient air.

8.
Sensors (Basel) ; 23(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36904962

RESUMO

Patients discharged from hospitals after an inpatient course of medical treatment for any ailment or traumatic injury that results in disabling conditions and are rendered mobility impaired require ongoing systematic sports and exercise programs to maintain healthy lifestyles. Under such circumstances, a rehabilitation exercise and sports center, accessible throughout local communities, is critical for promoting beneficial living and community participation for these individuals with disabilities. An innovative data-driven system equipped with state-of-the-art smart and digital equipment, set up in architecturally barrier-free infrastructures, is essential for these individuals to promote health maintenance and overcome secondary medical complications following an acute inpatient hospitalization or suboptimal rehabilitation. A federally funded collaborative research and development (R&D) program proposes to build a multi-ministerial data-driven system of exercise programs using a smart digital living lab as a platform to provide pilot services in physical education and counseling with exercise and sports programs for this patient population. We describe the social and critical aspects of rehabilitating such a population of patients by presenting a full study protocol. A modified sub-dataset of the previously generated 280-item full dataset is applied using a data-collecting system-"The Elephant"-as an example of how data acquisition will be achieved to assess the effects of lifestyle rehabilitative exercise programs for people with disabilities.


Assuntos
Pessoas com Deficiência , Esportes , Humanos , Promoção da Saúde , Pessoas com Deficiência/reabilitação , Terapia por Exercício , Exercício Físico
9.
Dalton Trans ; 52(7): 1885-1894, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36723214

RESUMO

Since the high configurational entropy-driven structural stability of multicomponent oxide system was proposed Rost et al. in 2015, many experiments and simulations have been done to develop new multicomponent oxides. Although many notable findings have shown unique physical and chemical properties, high configurational entropy oxide systems that have more than 3 distinct cation sites are yet to be developed. By utilizing atomic-scale direct imaging with scanning transmission electron microscopy and AC-impedance spectroscopy analysis, we demonstrated for the first time that a multicomponent equimolar proton-conducting quadruple hexagonal perovskite-related Ba5RE2Al2ZrO13 (RE = rare earth elements) oxide system can be synthesized even when adding eight different rare earth elements. In particular, as the number of added elements was increased, i.e., as the configurational entropy was increased, we confirmed that the chemical stability toward CO2 was improved without a significant decrement of the proton conductivity. The findings in this work broaden the use of the crystal structure to which the multicomponent model can be applied, and a systematic study on the correlation between the configurational entropy and proton conductivity and/or chemical stability is noteworthy.

10.
Sci Total Environ ; 842: 156961, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35760182

RESUMO

Electric vehicles (EVs) are regarded as zero emission vehicles due to the absence of exhaust emissions. However, they still contribute non-exhaust particulate matter (PM) emissions, generated by brake wear, tire wear, road wear, and resuspended road dust. In fact, because EVs are heavier than internal combustion engine vehicles (ICEVs), their non-exhaust emissions are like to be even higher. While total PM emissions, including exhaust and non-exhaust PM emissions, from ICEVs and EVs have been compared based on the emission factors (EFs) listed in national emission inventories, there have been no comparisons based on experimental determinations. In this study, exhaust and non-exhaust emissions generated from a gasoline ICEV, diesel ICEV, and EV were experimentally investigated. The results showed that the EFs for the total PM emissions of ICEVs and EV were dependent on the inclusion of secondary exhaust PM, the brake pad type, and the regenerative braking intensity of the EV. When only primary exhaust PM emissions were considered in vehicles equipped with non-asbestos organic (NAO) brake pads, the total PM10 EF of the EV (47.7-49.3 mg/V·km) was 10-17 % higher than those of the gasoline ICEV (42.3 mg/V·km) and diesel ICEV (43.2 mg/V·km). However, in vehicles equipped with low-metallic (LM) brake pads, the total PM10 EF of the EV (49.2-57.7 mg/V·km) was comparable or lower than those of the gasoline ICEV (56.3 mg/V·km) and diesel ICEV (57.2 mg/V·km). When secondary PM emissions were included, the EF was always significantly lower for the EV than ICEVs. The total PM10 EF of the EV (47.7-57.7 mg/V·km) was lower than those of the gasoline ICEV (56.5-70.5 mg/V·km) and diesel ICEV (58.0-72.0 mg/V·km). Since secondary PM particles are mostly of submicron size, the EFs of the PM2.5 fraction of the ICEVs (28.7-33.0 mg/V·km) were two times higher than those of the EV (13.9-17.4 mg/V·km).


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Gasolina , Veículos Automotores , Material Particulado/análise , Emissões de Veículos/análise
11.
Environ Res ; 212(Pt D): 113487, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35594957

RESUMO

Condensable particulate matter (CPM) corresponds to primary particulate matter ≤2.5 µm (PM2.5) obtained through the condensation of gaseous air pollutants caused by temperature drops in the atmosphere. The internal combustion of vehicle engines can produce CPM because of the condensable compounds in the exhaust gas. Conventional CPM measurement methods have been developed for coal-fired power plants with stable emissions through sampling and off-site analyses. They are therefore unsuitable for detecting the rapidly changing vehicle-originated CPM. In addition, the current system for evaluating PM2.5 from vehicles, based on the particle measurement program (PMP) protocol, provides only the emission factors of total PM2.5 (and not CPM separately) at a fixed temperature (∼25 °C) and dilution ratio (∼ × 35). This study reports, for the first time, the development of a real-time detection method for vehicle-originated CPM through a thermodenuder (TD) integrated with real-time aerosol instruments. This method was designed to reduce the loss of CPM due to condensation and diffusion while sampling the exhaust gas. It permits the investigation of the effects of dilution gas temperature (5-45 °C) and dilution ratio (up to × 30) on the formation of CPM. During the feasibility test of this method using a diesel vehicle (Euro-4), the real-time total particle number concentrations (PNs) matched well with those obtained by a PMP protocol-based evaluation system. Moreover, this method detected PNs concentrations ten times higher than the detection limit (4 × 106 particles/cm3) of the PMP-based system. The emission factors of the total PM2.5 with a bulk density (1 g/cm3) measured by this method also showed consistency with the results of the PMP protocol. The mass emission factor of CPM determined by deploying the TD was ∼14.57 mg/km (∼63% contribution to the total PM2.5).


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carvão Mineral/análise , Monitoramento Ambiental , Gases/análise , Material Particulado/análise , Centrais Elétricas , Emissões de Veículos/análise
12.
Chem Eng J ; 440: 135830, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35313452

RESUMO

Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES). The transparent Si-Al matrix strongly immobilized the photosensitizer molecules while dispersing them spatially, thus suppressing self-quenching. During nanolayer formation, PFOTES was anisotropically rearranged on the Si-Al matrix, promoting moisture resistance and triboelectric charging of the Si-Al/PFOTES-CV (SAPC)-coated filter. The SAPC nanolayer stabilized the photoexcited state of the photosensitizer and promoted redox reaction. Compared to pure-photosensitizer-coated filters, the SAPC filter showed substantially higher photobiocidal efficiency (∼99.99 % for bacteria and a virus) and photodurability (∼83 % reduction in bactericidal efficiency for the pure-photosensitizer filter but ∼0.34 % for the SAPC filter after 72 h of light irradiation). Moreover, after five washes with detergent, the SAPC filter maintained its photobiocidal and filtration performance, proving its reusability potential. Therefore, this SAPC nanolayer coating provides a practical strategy for manufacturing an antimicrobial and reusable mask filter for use during the ongoing COVID-19 pandemic.

13.
Ann Pediatr Endocrinol Metab ; 27(3): 236-241, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34670067

RESUMO

Mitotane is an adrenolytic drug that exhibits therapeutic effects within a narrow target range (14-20 µg/dL). Various complications develop if the upper limit is exceeded. We present the case of a 5-year-old girl with breast development, acne, and pubic hair who was diagnosed with an adrenal mass that was subsequently excised. The pathological finding was adrenocortical carcinoma with a high risk of malignancy, and adjuvant therapy (combined mitotane and radiation therapy) was recommended. Mitotane was initiated at a low dose to allow monitoring of the therapeutic drug level, and high-dose hydrocortisone was also administered. However, the patient exhibited elevated adrenocorticotropic hormone levels and vague symptoms such as general weakness and difficulty concentrating. It was important to determine if these symptoms were signs of the neurological complications that develop when mitotane level is elevated. Encephalopathy progression and pubertal signs appeared 6 months after diagnosis, induced by high mitotane level. The mitotane decreased to subtherapeutic level several months after its discontinuation, at which time endocrinopathy (central hypothyroidism, hypercholesterolemia, and secondary central precocious puberty) developed. The case shows that low-dose mitotane can trigger neurological and endocrinological complications in a pediatric patient, indicating that the drug dose should be individualized with frequent monitoring of the therapeutic level.

14.
Indoor Air ; 31(4): 1134-1143, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33682971

RESUMO

After the WHO designated COVID-19 a global pandemic, face masks have become a precious commodity worldwide. However, uncertainty remains around several details regarding face masks, including the potential for transmission of bioaerosols depending on the type of mask and secondary spread by face masks. Thus, understanding the interplay between face mask structure and harmful bioaerosols is essential for protecting public health. Here, we evaluated the microbial survival rate at each layer of commercial of filtering facepiece respirators (FFRs) and surgical masks (SMs) using bacterial bioaerosols. The penetration efficiency of bacterial particles for FFRs was lower than that for SMs; however, the microbial survival rate for all tested masks was >13%, regardless of filtration performance. Most bacterial particles survived in the filter layer (44%-77%) (e.g., the core filtering layer); the outer layer also exhibited significant survival rates (18%-29%). Most notably, survival rates were determined for the inner layers (<1% for FFRs, 3%-16% for SMs), which are in contact with the respiratory tract. Our comparisons of the permeability and survival rate of bioaerosols in each layer will contribute to bioaerosol-face mask research, while also providing information to facilitate the establishment of a mask-reuse protocol.


Assuntos
Máscaras/estatística & dados numéricos , Aerossóis , Microbiologia do Ar , COVID-19 , Filtração , Humanos , Staphylococcus epidermidis
15.
Sensors (Basel) ; 20(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354052

RESUMO

In the Republic of Korea, 90.5% of those living with spinal cord injury (SCI) are faced with medical complications that require chronic care. Some of the more common ones include urinary tract infections, pressure sores, and pain symptomatology. These and other morbidities have been recognized to deteriorate the individual's health, eventually restricting their community participation. Telerehabilitation, using information and communication technology, has propelled a modern-day movement in providing comprehensive medical services to patients who have difficulty in mobilizing themselves to medical care facilities. This study aims to verify the effectiveness of health care and management in the SCI population by providing ICT-based health care services. We visited eight individuals living with chronic SCI in the community, and provided ICT-based health management services. After using respiratory and urinary care devices with the provision of home visit occupational therapy, data acquisition was achieved and subsequently entered into a smart device. The entered information was readily accessible to the necessary clinicians and researchers. The clients were notified if there were any concerning results from the acquired data. Subsequently, they were advised to follow up with their providers for any immediate medical care requirements. Digital hand-bike ergometers and specialized seating system cushions are currently in development. The ICT-based health care management service for individuals with SCI resulted in a favorable expected level of outcome. Based on the results of this study, we have proposed and are now in preparation for a randomized clinical trial.


Assuntos
Terapia Ocupacional/métodos , Traumatismos da Medula Espinal/urina , Estudos de Viabilidade , Feminino , Pesquisas sobre Atenção à Saúde , Serviços de Assistência Domiciliar , Humanos , Masculino , Pessoa de Meia-Idade
16.
ACS Appl Mater Interfaces ; 12(5): 5730-5738, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31918549

RESUMO

Cr poisoning of cathode materials is one of the main degradation issues hampering the operation of solid oxide fuel cells (SOFCs). To overcome this shortcoming, LaNi0.6Fe0.4O3-δ (LNF) has been developed as an alternative cathode material owing to its superior chemical stability in Cr environments. In this study, we develop a hybrid electrochemical deposition technique to fabricate a nanostructured LNF-gadolinium-doped ceria (GDC) (n-LNF-GDC) cathode with enhanced active reaction sites for the oxygen reduction reaction. For this purpose, Fe and Ni cations are co-deposited onto an electrically conductive carbon nanotube-modified GDC backbone by electroplating, whereas La cations are successively deposited through a chemically assisted electrodeposition method. The proposed method involves a low-temperature (900 °C) calcination step of electrodeposited cations, which avoids the need of fabricating a GDC diffusion barrier layer which is otherwise needed to avoid the formation of insulating phases (e.g., La2Zr2O7) when fabricating by conventional high-temperature (≥1000 °C) sintering. Scanning electron microscopy images reveal a unique nanofibrous structure of n-LNF-GDC, which is believed to play an instrumental role in enhancing the electrochemical characteristics by increasing the active triple-phase boundaries. An anode-supported SOFC with the n-LNF-GDC cathode showed the superior performance of 0.984 W cm-2 at an intermediate temperature of 750 °C as compared to the power densities of 0.495 and 0.874 W cm-2 produced by LNF-GDC and state-of-the-art La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF)-GDC composite cathodes fabricated by conventional sintering. A short-term accelerated Cr-poisoning durability test indicated good electrochemical stability of n-LNF-GDC, whereas LSCF exhibited severe degradation. The electrochemically engineered nanostructured n-LNF-GDC can serve as an effective cathode for SOFCs to achieve high performance and long-term durability.

17.
Invest Radiol ; 55(5): 304-309, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31985601

RESUMO

BACKGROUND: The incidence of severe reaction induced by iodinated contrast media (ICM) has increased over the years with an increasing use of imaging modalities. Although ICM anaphylaxis is rare, it can be life-threatening, but currently, there is no biomarker that can identify individuals at risk of ICM anaphylaxis. OBJECTIVE: The aim of this study is to investigate the genetic susceptibility of ICM anaphylaxis. METHODS: Patients who had ICM anaphylaxis were enrolled in the study, and their blood samples were collected for genotyping of human leukocyte antigen (HLA)-A, -B, -C, and -DR. The results were compared with those of healthy Korean general population. MRGPRX2 gene in ICM anaphylaxis group was also sequenced and compared with the Korean standard database of genetic polymorphism. RESULTS: The frequencies of 3 HLA alleles (B*52:01, C*12:02, and DRB1*15:02) were significantly higher in 47 patients with ICM anaphylaxis. In particular, HLA-DRB1*15:02 was 5 times more frequent in the ICM anaphylaxis group than the Korean general population (34.0% vs 6.6%; odds ratio, 7.306; 95% confidence interval, 3.622-14.740), and this difference was most pronounced in subjects with iohexol-induced anaphylaxis (odds ratio, 16.516; 95% CI, 5.241-52.047; P < 0.0001). Eight single nucleotide polymorphisms were identified in MRGPRX2 gene, but their frequencies were not different in those with ICM anaphylaxis compared with the general Korean population. CONCLUSIONS: HLA-DRB1*15:02 is associated with ICM anaphylaxis in the Korean population.


Assuntos
Anafilaxia/induzido quimicamente , Cadeias HLA-DRB1/genética , Iohexol/efeitos adversos , Anafilaxia/genética , Anafilaxia/metabolismo , Estudos de Casos e Controles , Meios de Contraste/efeitos adversos , Feminino , Frequência do Gene , Predisposição Genética para Doença , Cadeias HLA-DRB1/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Razão de Chances , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética
18.
ChemSusChem ; 11(15): 2620-2627, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-29808966

RESUMO

State-of-the-art cathodes for solid oxide fuel cells (SOFCs), such as (La,Sr)MnO3 -(Y2 O3 )0.08 (ZrO2 )0.92 (LSM-YSZ), suffer from sluggish oxygen reduction reaction (ORR) kinetics at reduced temperatures, leading to a significant decline in their performance. Herein, we report a tailored SOFC cathode with high ORR activity at intermediate temperatures using a simple but effective approach based on "electrochemical" surface modification. The proposed process involves chemically assisted electrodeposition (CAED) of a metal hydroxide (LaCo(OH)x ) on LSM-YSZ surfaces followed by in situ thermal conversion of LaCo(OH)x to perovskite-type LaCoO3 (LCO) nanoparticles during the SOFC startup. This method facilitates easy loading of the LCO nanoparticles with a precisely controlled morphology without the need for repeated deposition/annealing processes. An anode-supported SOFC with the LCO-tailored LSM-YSZ electrode exhibits a remarkably increased power density, approximately 180 % at 700 °C, compared with an SOFC with the pristine electrode as well as excellent long-term stability, which are attributed to the beneficial role of the CAED-derived LCO nanoparticles in enlarging the active areas for ORR and promoting oxygen adsorption/diffusion. This work demonstrates that controlled surface tailoring of the cathode by CAED could be an effective approach for improving the performance of SOFCs at reduced temperatures.

19.
Epilepsy Res ; 129: 118-124, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28043061

RESUMO

Early-onset epileptic encephalopathy (EOEE) consists of a heterogeneous group of epilepsy phenotypes. Recent technological advances in molecular biology have also rapidly expanded the genotype of EOEE. Genes involved in diverse molecular pathways, including ion channels, synaptic structure, transcription regulation, and cellular growth, have been implicated in EOEE. Mitochondrial aminoacyl tRNA synthetase, which plays a key role in mitochondrial protein synthesis by attaching 20 different amino acids to the tRNA tail, has been recently linked with the epilepsy phenotype. Here, we report a novel homozygous c.925G>A (G309S) missense mutation in the gene that encodes the human mitochondrial phenylalanyl-tRNA synthetase (FARS2) in four patients from two nonconsanguineous Korean families. All four patients suffered from intractable seizures that started at the age of 3 and 4 months. Seizure types were variable, including infantile spasms and myoclonic seizures, and often prolonged. Although their initial development seemed to be normal, relentless regression after seizure onset occurred in all patients. An etiologic investigation, including brain imaging and metabolic studies, did not reveal a specific etiology. We reviewed the epilepsy phenotypes of six additional FARS2 mutation-positive patients and suggest that FARS2 can be considered one of the genetic causes of EOEE.


Assuntos
Epilepsia/genética , Proteínas Mitocondriais/genética , Mutação de Sentido Incorreto , Fenilalanina-tRNA Ligase/genética , Encéfalo/diagnóstico por imagem , Epilepsia/diagnóstico por imagem , Feminino , Humanos , Lactente , Masculino , Proteínas Mitocondriais/metabolismo , Simulação de Dinâmica Molecular , Fenótipo , Fenilalanina-tRNA Ligase/metabolismo
20.
Oncotarget ; 7(52): 86433-86445, 2016 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-27835906

RESUMO

Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. Although rituximab therapy improves clinical outcome, some patients develop resistant DLBCL; however, the genetic alterations in these patients are not well documented. To identify the genetic background of refractory DLBCL, we conducted whole-exome sequencing and transcriptome sequencing for six patients with refractory and seven with responsive DLBCL. The average numbers of pathogenic somatic single nucleotide variants and indels in coding regions were 71 in refractory patients (range 28-120) and 38 (range 19-66) in responsive patients. Missense mutations of TP53 were exclusive in 50% (3/6) of refractory patients and involved the DNA-binding domain of TP53. All missense mutations of TP53 were accompanied by copy number deletions. RAB11FIP5, PRKCB, PRDM15, FNBP4, AHR, CEP128, BRE, DHX16, MYO6, and NMT1 mutations were recurrent in refractory patients. MYD88, B2M, SORCS3, and WDFY3 mutations were more frequent in refractory patients than in responsive patients. REL-BCL11A fusion was found in two refractory patients; one had both fusion and copy number gain. Recurrent copy gains of POU2AF1, SLC1A4, REL11, FANCL, CACNA1D, TRRAP, and CUX1 with significantly increased average expression were found in refractory patients. The expression profile revealed enriched gene sets associated with treatment resistance, including oxidative phosphorylation and ATP-binding cassette transporters. In conclusion, this study integrated both genomic and transcriptomic alterations associated with refractory DLBCL and found several treatment-resistance alterations that may contribute to refractoriness.


Assuntos
Exoma , Linfoma Difuso de Grandes Células B/genética , Transcriptoma , Variações do Número de Cópias de DNA , Fusão Gênica , Genes p53 , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...